
CS103 Handout 29

Winter 2018 February 9, 2018

Inductive Proofwriting Checklist

In Handout 28, the Guide to Inductive Proofs, we outlined a number of specifc issues and con-
cepts to be mindful about when writing inductive proofs. This proofwriting checklist distills down
those concepts to smaller number of specifc points that you should keep an eye out for when writ-
ing up your inductive proofs:

☐ Make P(n) a predicate, not a number or function.

☐ Watch your variable scoping in P(n).

☐ “Build up” if P(n) is existentially-quantifedd
 “build down” if it’s universally-quantifed.

☐ Choose the simplest base case possible.

The remainder of this handout goes into more detail about what each of these rules mean.

2 / 6

Make P(n) a Predicate, Not a Number or Function
The principle of induction states that if you have a predicate P and the following are true:

• P(0)

• ∀k ∈ ℕ. (P(k) → P(k+1))

then you can conclude that ∀n ∈ ℕ. P(n) must be true.

It’s important to note that P has to be a predicate for any of the above statements to be syntactically
valid. Forgetting for the moment that we’re dealing with induction, in First-Order Logic Land the
statement P(0) can only be true or false if P is a predicate, and the statement P(k) → P(k+1) only
makes sense if P(k) and P(k+1) evaluate to truth values, which only happens when P is a predicate.

One of the most common mistakes we see in inductive proofs is to defne P as something that isn’t
a predicate. For example, on the recurrence relations problem from Problem Set Five, if you want
to prove that aₙ = 2n for every n ∈ ℕ, you should not defne P(n) like this:

⚠ P(n) = 2n ⚠

This doesn’t work because P isn’t a predicate; the quantity 2n isn’t something that evaluates to true
or false. If we try using this P in the defnition of mathematical induction given above, we’d say
that if 20 is true and ∀k ∈ ℕ. (2k → 2k+1) is true, then ∀n ∈ ℕ. 2n is true. The statement “20 is true”
isn’t mathematically meaningful, and we can’t apply the → connective between the terms 2 k and
2k+1 because they’re quantities, not booleans.

So before you submit your proofs, double-check that you’ve actually chosen P as a predicate. Just
ask whether it’s something that can be true or false (good!), or whether it’s a quantity of some sort
(bad!).

3 / 6

Watch Your Variable Scoping in P(n)
Another common mistake we see people make when defning the predicate P is to write something
like this:

⚠ P(n) is “for any n ≥ 1, |ℕn| = |ℕ|.” ⚠

Why exactly isn’t this correct? After all, P is indeed a predicate: it either evaluates to true or false.

The issue here is one of variable scoping. To illustrate this, consider the following piece of
C/C++/Java-esque code:

void doSomething(int n) {
 for (int n = 0; n < 137; n++) {
 // … do something with n …
 }
}

There’s something weird about this code. This function takes in a parameter called n, which is sup-
posed to be set by the person calling the function, but it then immediately proceeds to declare a
new variable n inside the for loop. Depending on your programming language, this is either (1) re-
ally bad style or (2) a compile-time error.

The predicate P defned above makes the same mistake as this code. The problem is that there are
two diferent variables n here: there’s the variable n that’s the argument of the predicate (kinda like
the parameter n to the doSomething function), and then there’s the variable n introduced by “for
any n” (kinda like the variable n defned in the for loop). And just as the meaning of the code is ei-
ther “uh, that’s really weird” or “that’s not even legal” (depending on which language you’re using),
mathematically the predicate P defned above is either “uh, that’s really weird” or “that’s not even
legal” (depending on who you ask).

Treat the argument to the predicate P like an argument to a function. The caller specifes it, and
you shouldn’t say something like “for any n” or “for some n” inside of the defnition of P(n). Re-
member, induction ultimately lets you conclude that P(n) is true for all n ∈ ℕ, and so the “for all
n ∈ ℕ” part is provided externally to the predicate P.

4 / 6

“Build Up” if P(n) is Existentially Quantifedd
“Build Down” if P(n) is Universally-Quantifed
Let’s look at two of the inductive proofs we did in lecture: the proof that any square can be subdi-
vided into n squares for any n ≥ 6, and the proof that any tree with n nodes has exactly n-1 edges.
If you look at the high-level structure of those proofs, you’ll see that their inductive steps difer in a
key specifc way. In the proof that a square can be subdivided into smaller squares, the inductive
step starts of with a subdivision of the square into k squares, then uses that to form a subdivision
of the square into k+3 squares. In the proof that a tree with n nodes has n-1 edges, the inductive
step starts with a tree of k+1 nodes, then breaks it apart into several smaller trees of at most k
nodes each.

It seems like these proofs are going in opposite directions. In the square case, we start with a
smaller object (size k) and grow it into a larger object (size k+3). In the tree case, we start with a
larger object (size k+1) and shrink it into smaller objects (sizes at most k). What’s going on here?

The answer has to do with how the predicate P is defned in each case. In the case of the square
subdivision problem, then predicate P is (implicitly) existentially-quantifed. That is, if we write it
in a hybrid English/FOL notation, we’d get something like this:

P(n) is “∃S. (S is a subdivision of a square ∧ S has n squares)”

In the case of the tree edges problem, the predicate P is (implicitly) universally-quantifed. Written
in a hybrid English/FOL notation, it looks like this:

P(n) is “∀T. (T is a tree with n nodes → T has n-1 edges)”

(Please don’t actually write your predicates this way – it’s just for expository purposes.)

Notice that in the square case, the predicate P is existentially-quantifed, and in the tree case, the
predicate P is universally-quantifed. That’s a really important distinction, and it explains why we
work the way we do.

To see this, imagine we have some predicate P that looks like this:

P(n) is “there is an X of size n where [...]”

If we want to prove that P(n) is true for all n ∈ ℕ, then in our inductive step we’d need to prove that

If
 there is an X of size k where [...],
then
 there is an X’ of size k+1 where [...].

Take a step back for a minute and think, abstractly, about how you prove something like this. We
begin by assuming the antecedent. Since the antecedent is existentially-quantifed, it means that
we’re assuming we have some honest-to-goodness object X lying around of size k that has some
specifc property. In other words, we can think of assuming the antecedent in this case as starting
of with some concrete object in hand.

We then need to prove the consequent, which is an existential statement. This means that we need
to somehow show that, somewhere out there, there’s an object X’ of size k+1 with some property.
Given that we already have a handy object X lying around, it’s very reasonable to see if we can
start with that object X and then extend it into something larger.

In other words, we start with a smaller object (one of size k), then show how to convert it to a big-
ger object (one of size k+1).

5 / 6

On the other hand, if we have a predicate P that looks like this:

P(n) is “for any object X of size n, X has property [...]”

then the inductive step would look like this:

If
 for any X of size k, X has property [...],
then
 for any X’ of size k+1, X’ has property […].

Think about how you prove a statement like this. We’d begin by assuming the antecedent. Since
the antecedent is universally-quantifed, we can think of it as a tool. It says “hey, as soon as you can
actually fnd me an X of size k, I can step in and help you show that it has to some some key prop-
erty.” However, at the moment we don’t actually have an object of size k lying around. Think of it
as if we have a hammer rather than a nail – once we fnd a nail we can hammer it, but assuming the
antecedent doesn’t actually give us a nail to hit.

Next, we go to prove the consequent. The consequent is universally-quantifed, and so if we want to
prove it by a direct proof, we’d begin by choosing some object X’ of size k+1, then trying to prove
it has some property. So now we have an actual choice of object X’ in hand. It’s not quite the right
shape for our antecedent (the antecedent only works when we get objects of size k, not k+1), so it’s
reasonable to try to see if we can produce some smaller object X out of our object X’. That way,
we can use our antecedent to learn something new about X, which might in turn tell us something
about X’.

In other words, we start with a larger object (one of size k+1) and then try to convert it to a smaller
object (one of size k).

The diference between these two approaches is purely a diference in what quantifer is at the
front of the predicate P. If it’s existentially-quantifed, we start with something smaller and then try
to grow it. If it’s universally-quantifed, we start with something larger and shrink it down.

When you’re writing up your proofs – and when you’re still in the problem-solving stage – make
sure that you keep these points in mind. Reread your proofs and check for the directionality in
your induction – if you’re going in a diferent direction than what we’re proposing here, it likely
means that there’s a logic error in your proof.

6 / 6

Choose the Simplest Base Case Possible
All inductive proofs need to kick of the induction somewhere, and that’s the job of the base case.
Choosing the “right” base case is important to the proof, both in terms of correctness and in terms
of proofwriting style. At the same time, choosing the right base case can be tricky, because induc-
tive base cases often consider cases that are so small or degenerate that they bear little resemblance
to the overall problem at hand.

Handout 26, the Guide to Inductive Proofs, goes into a bunch of detail about the importance and
value of choosing the right base case, and in the interest of space we won’t repeat all of those de-
tails here. What we can do, though, is provide a series of questions you should think through to
make sure that you’ve picked your base cases intelligently:

1. Are all the numbers you need to have covered covered? For example, if you’re going to
prove that something is true for all natural numbers, you’ll need to ensure that you’ve cov-
ered the zero case, so you’d probably want to pick a base case like n = 0. If you start later
than this, it’s likely a logic error.

2. Have you thought through degenerate cases? Often times, the base case of an inductive
proof involves an extreme sort of edge case (a set of no elements, an implication that’s vac-
uously true, a sum of no numbers, a graph with no nodes, etc.) It can feel really, really
weird working with cases like these the frst time that you’re exposed to them, but it gets a
lot easier with practice. If you’re uncertain whether the result is true in some extreme case,
it’s best to ask the course staf for input. You’ll build a good intuition for what works and
what doesn’t over time.

3. Does the logic in your inductive step apply to your base case? Once you’ve picked your
base case, look at the reasoning in it. Is the reasoning there just a special case of the reason-
ing in your inductive step? If so, that might indicate that you haven’t actually picked the
simplest possible base case and that you might be able to pick an even simpler base case.

4. If you have multiple base cases, are they truly necessary? Some proofs by induction really
do need multiple base cases, such as the square subdivision problem from lecture (where
we need one base case for each remainder modulo three). However, most of the time we
see proofs that have multiple base cases in them, we fnd that at least one of them isn’t nec-
essary. Often times, that extra base case can be eliminated by asking question (3) from this
list.

	Make P(n) a Predicate, Not a Number or Function
	Watch Your Variable Scoping in P(n)
	“Build Up” if P(n) is Existentially Quantified; “Build Down” if P(n) is Universally-Quantified
	Choose the Simplest Base Case Possible

